Global Optimization of Mixed-Integer Nonlinear Problems

نویسندگان

  • C. S. Adjiman
  • I. P. Androulakis
چکیده

Two novel deterministic global optimization algorithms for nonconvex mixed-integer problems (MINLPs) are proposed, using the advances of the BB algorithm for noncon-vex NLPs Adjiman et al. (1998a). The Special Structure Mixed-Integer BB algorithm (SMIN-BB addresses problems with nonconvexities in the continuous variables and linear and mixed-bilinear participation of the binary variables. The General Structure Mixed-Integer BB algorithm (GMIN-BB), is applicable to a very general class of problems for which the continuous relaxation is twice continuously diierentiable. Both algorithms are developed using the concepts of branch-and-bound, but they diier in their approach to each of the required steps. The SMIN-BB algorithm is based on the convex underestimation of the continuous functions while the GMIN-BB algorithm is centered around the convex relaxation of the entire problem. Both algorithms rely on optimization or interval based variable bound updates to enhance eeciency. A series of medium-size engineering applications demonstrates the performance of the algorithms. Finally, a comparison of the two algorithms on the same problems highlights the value of algorithms which can handle binary or integer variables without reformulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

Global optimization of mixed-integer bilevel programming problems

Global optimization of mixed-integer nonlinear bilevel optimization problems is addressed using a novel technique. For problems where integer variables participate in both inner and outer problems, the outer level may involve general mixed-integer nonlinear functions. The inner level may involve functions that are mixed-integer nonlinear in outer variables, linear, polynomial, or multilinear in...

متن کامل

ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations

This manuscript introduces ANTIGONE, Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations, a general mixed-integer nonlinear global optimization framework. ANTIGONE is the evolution of the Global Mixed-Integer Quadratic Optimizer, GloMIQO, to general nonconvex terms. The purpose of this paper is to show how the extensible structure of ANTIGONE realizes our previously-p...

متن کامل

Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization

This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed. Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the comp...

متن کامل

Global Solution Strategies for the Network-Constrained Unit Commitment (NCUC) Problem with Nonlinear AC Transmission Models

This paper addresses the globally optimal solution of the network-constrained unit commitment (NCUC) problem incorporating a nonlinear alternating current (AC) model of the transmission network. We formulate the NCUC as a mixed-integer quadratically constrained quadratic programming (MIQCQP) problem. A global optimization algorithm is developed based on a multi-tree approach that iterates betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007